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Polynomial Approximations for the Electric
Polarizabilities of Some Small Apertures

NOEL A. McDONALD, SENIOR MEMBER, IEEE

Abstract —Polynomial expressions are given for the electric polarizabili-

ties of some small apertures of various shapes, as functions of the aperture

width to length ratios. The shapes considered are rectangle, diamond,

rounded end slot, and ellipse, of which only the last is known to have an

exact solution. Although the polynomial expressions are not exact, all

embody features which would exist in exact solntions if they could be

found. Vafues calculated from tbe polynomials compare well with previ-

ously published data, indicating accuracy sufficient for many purposes.

I. INTRODUCTION

I N SEVERAL BRANCHES of electromagnetic en-

gineering there is a need to determine the polarizability

of small apertures of various shapes. This paper is con-

cerned with the electric polarizabilities of small apertures

of the shapes shown in Fig. 1, of which only the ellipse is

known to have an exact solution. All of the shapes in Fig. 1

are characterized by a maximum length L and a maximum

width W, and the width to length ratio or aspect ratio W/L

will in all cases be designated a.

A common convention is for magnetic polarizabilities to

be positive quantities and for electric polarizabilities to be

negative quantities. For simplicity in this paper dealing

only with electric polarizabilities, positive quantities will be

used throughout.

II. I@CTANGLE

In a recent paper, Arvas and Barrington [1] have given

numerical values for the electric polarizabilities of rectan-

gular apertures of various aspect ratios as an example of

their technique for computing the electric polarizabilities

of apertures as the dual of the magnetic polarizabilities of

conducting disks.

It is of interest to compare their values with those

calculated earlier [2], [3] using a variational modal tech-

nique. The electric polarizability of a rectangular aperture

of side lengths L and W, as in Fig. l(a), may be expressed

as

in which the coefficient R ~ is a function of the aspect ratio
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Fig. 1. Aperture Shapes. (a) Rectangle. (b) Diamond. (c) Rounded end
slot. (d) Ellipse.

W/L, i.e.,

(2)

In Table I, the numerical values for R ~ from Arvas and

Barrington [1] are compared with those from the earlier

work [2], [3]. Also shown in Table I are the values calcu-

lated from a simple polynomial to be discussed below, and

Cohn’s experimental values [4].

It will be noted that there is good agreement between the

1983 and 1971 solutions, and with the experimental results

from [4].

The polarizability of a square (W= L) is of particular

interest, not only because of the symmetry of the problem

but also because that value determines the slope of a

function in addition to its magnitude as will now be shown.

The electric polarizability of a rectangular aperture is

independent of the choice of which side is L and which is

W as it is associated only with the normal electric field at

the aperture. (In the case of the magnetic polarizability, the

sides have to be related to the direction of the tangential

magnetic field.) Thus, from (1) and (2)

‘(:)L3=’HW3

‘(:)’ f(+IL’

Thus, if the aspect ratio W/L is designated a

Hf(a) = d’ : (3)

and if an analytical solution to this problem was ever

found, it would satisfy (3).
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TABLE I

ELECTRIC POLARIZABILITY COEFFICIENT OF A RECTANGULAR
APERTURE AS A FUNCTION OF ASPECT RATIO

a Arvas & McDonald Polynomial Cohn

Harrlngton Experiment

1983 1971 1952

1.0 0.1116 0.11z6 0.11Z6 0.1137

0.9 - 0.0960 0.0960

0.8 - 0.0799 0.0800

0.75 0.0717 0.07ZZ 0.0731

0.7 - 0.0645 0.0647

0.6 - 0.0501 0.050Z

0.5 0.0364 0,0368 0.0369 0.0370

0.4 - 0,0249 0.0Z50

0.3 0,01468 0.0148 0.0149 0.0147

0.2 0.0069 0.00695 0.00701 0.0070

0.1 0.00184 0.00183 0.00186 0.0019

Taking the derivative of (3) with respect to a gives

f’(a’=’a’f(:)-a f’(:)

which, for a = 1 (a square aperture), reduces to

f’(l) = ;f(l). (4)

Therefore, a numerical value for the polarizability coeffi-

cient for a square aperture, together with the knowledge

[4], [5] that as

~+() f(a) + &a’ (5)

gives a considerable amount of information about f(a).

For example, if f(a) is approximated by the polynomial

f(fx)=a+ba +ca2+da3+ea4

for a in the range O to 1, from (5) a = O, b = O, and

c = n/16. Then d and e can be determined from (4) with

f(1) taken as 0.1126. (The Arvas and Barrington value of

0.1116 may increase slightly if more interior nodes are

used, as indicated in their paper.) The resulting poly-

nomial expression for f(a), which is the polarizability

coefficient R ~, can then be expressed as

f(a) = &2{l.0-0.5663a+ 0.1398a2} . (6)

Values for ~(a) calculated from (6) are given in Table I

and show good agreement with the numerical solutions and

experimental results. Accordingly, the polynomial expres-

sion (6) should be sufficiently accurate for many purposes.

Note that as the polynomial expression (6) does not

satisfy (3), it is not valid for all a. (It is simply the lowest

order polynomial approximation for Os as 1 for which all
coefficients can be determined from the values of the
function for a a O and a =1.) However, that presents no

limit to its utility, as an aspect ratio of greater than 1 can

always be converted to less than 1 by (3), or more simply L

is chosen to be the longer side so that W/L is always less

than 1.

Because of the apparent success of the fourth-power

polynomial approach for the rectangular aperture, the

question arises whether it could give useful results for other

shapes. In particular, there would be interest in the di-

amond and the rounded end slot of Fig. l(b) and (c).

However, for these shapes, the coefficients in the fourth-

power polynomial cannot be determined so directly Wd

some intuitive reasoning is required to find some of the

coefficients.

III. DIAMOND

For the diamond shape in Fig. l(b), the electric polariza-

bility can be expressed as

Pe = g(a)L3

in which the polarizabilit y coefficient g(a) is a function of

the aspect ratio W/L.

For the diamond, the choice of L or W for the reference

direction is arbitrary, as it is for the rectangle, leading to

g’(l) = ;g(l).

Thus, if the electric polarizability of a square is considered

to be known to good accuracy from Section II, two equa-

tions are available for the determination of the coefficients

of the fourth-power polynomial. However, whereas for the

rectangular aperture the behavior was known for a + O, for

the diamond shape some intuitive reasoning is necessary to

ascertain the small a behavior.

For a rectangular aperture, as the ratio of width W to

length L goes to zero

which may be interpreted as a polarizability of (7/16) W’

per unit length [5].

This suggests that if the width o of a long narrow

aperture varies very slowly along the length, then the

polarizability could be obtained by integrating (m/16)u2

along the length of the aperture.
This postulate is supported by the fact that if it is used

to calculate the electric polarizability of a very long narrow

ellipse (as in Fig. l(d) but with W << L) the result is

which agrees with the exact solution from [6] for an ellipse

of eccentricity approaching unity.

The application of this reasoning to the diamond shape

gives

w
—+0 Pe + ~w2L
L

i.e.,

a-+cl g(a) + &a’.
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If, for a in the range Os a <1, g(a) is approximated by

g(a) =a+ba+ca2+da3+erx4

then

T

a=o’b=o’andc=z”

Also, using the results for a square from

diamond with W= L, the polarizability is

lL\3

(a) (b)

Fig. 2. (a) Circle within a circle. (b) Rounded end slot within a circle.

Section II for a
TABLE II

ELECTRIC POLARIZABILITY COEFFICIENT OF A ROUNDED END SLOT
AS A FUNCTION OF ASPECT RATIO

leading to g(1)= 0.0398 and g’(1)= 0.0597.

Then the resulting polynomial can be put in the form

g(a) = &2{l.0-0.4794a +0.0876 az}. (7)

Possibly the best check on this expression from the pub-

lished literature is in [1, fig. 5]. In that figure, the

“normalized electric polarizabilit y“ T.u, defined as the

polarizability divided by (area)3z2, is shown for both rect-

angular and diamond shapes. For an aspect ratio of 1, Tau

for a rectangle and a diamond are the same, as in that case

both are squares. For smaller aspect ratios, TaU for a

diamond is slightly less than for a rectangle, with the

difference increasing as the aspect ratio is decreased until,

at a = 0.1, the difference is approximately 5 percent. The

ratio between Tao for a diamond and T~U for a rectangle

calculated from the polynomial approach taken in this

paper would range between 1.0 for a =1.00 and 2@/3

( = 0.943) for a ~ O, with intermediate values of 0.95 at

a = 0.1 and 0.98 at a = 0.5.

Also, [1, fig. 4] contains a plot, generated from six

computed data points, of the polarizability coefficient

against aspect ratio for diamond-shaped apertures. If val-

ues of g(a) from (7) for the same six aspect ratios are also

plotted on that figure, they fall within the small circles

marking the data points.

IV. ROUNDED END SLOT

If, for the rounded end slot shown in Fig. l(c), the

electric polarizability is expressed as

Pe=h(a)L3

then h(1) = 1/12 as that is the known result for a circle [6].
Also, as a a O, h(a) for a rounded end slot will approach

the same value as for a rectangle. (Consider a rounded end

slot of fixed width W and length L. As L is increased, the

polarizability will go to (7/16) W2L plus a correction term.

As L ~ m, i.e., a ~ O, the (T/16)W2L. term will dominate.)

Therefore, as

(X+C) h(a) + :d.

What is missing in this case is a direct way of obtaining

h’(l) as there is no equivalent of (3) (a >1 has no meaning).

Consider the effect on the polarizability of a circular

aperture of radius R if the radius is reduced very slightly

. POlynOmi al Cohn Experiment

1.0 0.0833 0.0833

0.75 0.0589 0.0585

0.5 0.0326 0.0325

0.3 0.0139 0.0143

0.2 0.0067 0.0070

0.15 0.0039 0.0041

0.1 0.0018 0.0019

by 8, as in Fig. 2(a)

Pe=~(R–8)3

Thus, for incrementally small values of 8, the change in Pe

is proportional to 8 and is R/r times the change in area.

Also, it is known that the electric polarizability is not

orientation-dependent. This suggests that if 8 is not uni-

form around the boundary, provided it is very small and its

variation is smooth, then the change in polarizability may

be obtained by integrating 8 around the circumference, i.e.,

from R/r times the change in area. This postulate is

supported by the fact that if it is applied to an elliptical

aperture of very small eccentricity, by considering the

ellipse to be a slight deformation of a circle, the result for

the polarizability is

$(3W-L)L2

which agrees with the exact solution from [6] for an ellipse

of eccentricity y approaching zero.

Then h’(l) can be obtained by considering the limit as
~ ~ 1 of the rounded end slot within a circle as shown in

Fig. 2(b). The result is

h’(l)=:–+.
The solution then proceeds as for the other aperture shapes

to give

k(a) = ;cr2{l.0-0.7650 a+0.1894a2}. (8)

Values for h(a) calculated from (8) are compared in Table

II with Cohn’s experimental results [4].

Note that if the reasoning used to obtain h’(l) was

incorrect, errors in h ( a)’ could be expected for the larger
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TABLE III W. CONCLUSIONS
ELECTRIC POLARIZABILITY COEFFICIENTOF AN ELLIPSE AS A

FUNCTION OF ASPECT RATIO Polynomial approximations for the electric polarizability

coefficients of some small apertures are presented in (6)–(9).
. Polynomial Exact Value Error When multiplied by L3, those expressions give the electric

1.0 0.0833
polarizabilities of the respective apertures. -

0.0833

0.9 0.0709 0.0710 0.1% It has been assumed that the apertures are small in
0.8 0.0588 0.0591 0.5% wavelength and that the wall is of infinitesimal thickness.
0.7 0.0472 0.0477 1.0% If either of those conditions is not satisfied, correction
0.6 0.0363 0.0369 1.6%

0.5 0.0264 0.0270 2.2% terms will be necessary [7].
0.4 0.0177 0.0182 2.7$

0.3 0.0104 0.0107 2.8%

0.2 0.00482 0.00498 3.2%

0.1 0.00126 0,00129 2.3%
[1]

The largest absolute error occure for a between 0.5 and 0.6, and the
largest percentage error occurs for a of approximately 0.2.

[2]

values of a. However, the values of h(a) for a = 0.5 and [31

a = 0.75 are both within 1 percent of the experimental

results. [4]

V. ELLIPSE [5]

Finally, there may be some interest in a fourth-power ~61

polynomial expression for the electric polarizability of an

elliptical aperture, either as a simpler alternative to the [71

exact solution [6] containing an elliptic integral, or to

ascertain for this case how close the polynomial approach

is to the exact solution (the ellipse is the only shape for

which this test can be applied).

For an ellipse, the polynomial expression for the polariz-

ability coefficient, obtained by the methods outlined above,

is

i(a) = ficr2{l.0- 0.4085 a+0.0451a2}. (9)

From the comments made in Sections HI and IV, it is

known that i(a) has the correct behavior as a ~ O, and has

the correct magnitude and slope at a =1.

In Table III, values for the polarizability coefficient

calculated from the polynomial (9) are compared with

those from the exact solution.
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