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Polynomial Approximations for the Electric
Polarizabilities of Some Small Apertures

NOEL A. McCDONALD, SENIOR MEMBER, IEEE

Abstract —Polynomial expressions are given for the electric polarizabili-
ties of some small apertures of various shapes, as functions of the aperture
width to length ratios. The shapes considered are rectangle, diamond,
rounded end slot, and ellipse, of which only the last is known to have an
exact solution. Although the polynomial expressions are not exact, all
embody features which would exist in exact solutions if they could be
found. Values calculated from the polynomials compare well with previ-
ously published data, indicating accuracy sufficient for many purposes.

I. INTRODUCTION

N SEVERAL BRANCHES of electromagnetic en-

gineering there is a need to determine the polarizability
of small apertures of various shapes. This paper is con-
cerned with the electric polarizabilities of small apertures
of the shapes shown in Fig. 1, of which only the ellipse is
known to have an exact solution. All of the shapes in Fig. 1
are characterized by a maximum length L and a maximum
width W, and the width to length ratio or aspect ratio W/L
will in all cases be designated a.

A common convention is for magnetic polarizabilities to
be positive quantities and for electric polarizabilities to be
negative quantities. For simplicity in this paper dealing
only with electric polarizabilities, positive quantities will be
used throughout.

II. RECTANGLE

In a recent paper, Arvas and Harrington [1] have given
numerical values for the electric polarizabilities of rectan-
gular apertures of various aspect ratios as an example of
their technique for computing the electric polarizabilities
of apertures as the dual of the magnetic polarizabilities of
conducting disks.

It is of interest to compare their values with those
calculated earlier [2], [3] using a variational modal tech-
nique. The electric polarizability of a rectangular aperture
of side lengths L and W, as in Fig. 1(a), may be expressed
as

Pe=R,I>

(1)

in which the coefficient R, is a function of the aspect ratio
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Fig. 1. Aperture Shapes. (a) Rectangle. (b) Diamond. (¢) Rounded end
slot. (d) Ellipse.
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In Table I, the numerical values for R, from Arvas and
Harrington [1] are compared with those from the earlier
work [2], [3]. Also shown in Table I are the values calcu-
lated from a simple polynomial to be discussed below, and
Cohn’s experimental values [4].

It will be noted that there is good agreement between the
1983 and 1971 solutions, and with the experimental results
from [4].

The polarizability of a square (W= L) is of particular
interest, not only because of the symmetry of the problem
but also because that value determines the slope of a
function in addition to its magnitude as will now be shown.

The electric polarizability of a rectangular aperture is
independent of the choice of which side is L and which is
W as it is associated only with the normal electric field at
the aperture. (In the case of the magnetic polarizability, the
sides have to be related to the direction of the tangential
magnetic field.) Thus, from (1) and (2)

w 13 L -
1z} =ow)

W3 /L 13
B ( L ) / ( W) '
Thus, if the aspect ratio W/L is designated «
1
f(a) = “Bf(:;) (3)

and if an analytical solution to this problem was ever
found, it would satisfy (3).
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TABLE I
ELECTRIC POLARIZABILITY COEFFICIENT OF A RECTANGULAR
APERTURE AS A FUNCTION OF ASPECT RATIO

a Arvas & McDonald Polynomial Cohn
Harrington Experiment
1983 1971 1952
1.0 0.1116 0.1126 0.1126 0.1137
0.9 - 0.0960 0.0960 -
0.8 - 0.079¢9 0.0800 -
0.75 0.0717 - 0.0722 0.0731
0.7 - 0.0645 0,0647 -
0.6 - 0.0501 0.0502 -
0.5 0.0364 0.0368 0.0369 0.0370
0.4 - 0,0249 0.0250 -
0.3 0.01488 0.0148 0.0143 0.0147
0.2 0.0069 0.00695 0.00701 0.0070

0.1 0.00184 0.00183 0.00186

Taking the derivative of (3) with respect to a gives
1 1
1@ =30 ¢ |- ar(5]
a a
which, for a=1 (a square aperture), reduces to

0= 3101, (@

Therefore, a numerical value for the polarizability coeffi-
cient for a square aperture, together with the knowledge
[4], [5] that as

a>0  f(a)- e’ (5)

gives a considerable amount of information about f(a).
For example, if f(a) is approximated by the polynomial

f(a)=a+ba+ca*+da’+ea*

for a in the range 0 to 1, from (§) a=0, b=0, and
¢=m/16. Then d and e can be determined from (4) with
f(Q) taken as 0.1126. (The Arvas and Harrington value of
0.1116 may increase slightly if more interior nodes are
used, as indicated in their paper.) The resulting poly-
nominal expression for f(a), which is the polarizability
coefficient R, can then be expressed as

4
f(o) = 70*(1.0-0.56630+01398a7 ). (6)

Values for f(a) calculated from (6) are given in Table I
and show good agreement with the numerical solutions and
experimental results. Accordingly, the polynomial expres-
sion (6) should be sufficiently accurate for many purposes.

Note that as the polynomial expression (6) does not
satisfy (3), it is not valid for all «. (It is simply the lowest
order polynomial approximation for 0 < a <1 for which all
coefficients can be determined from the values of the
function for a — 0 and a=1.) However, that presents no
limit to its utility, as an aspect ratio of greater than 1 can
always be converted to less than 1 by (3), or more simply L
is chosen to be the longer side so that W/L is always less
than 1.
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.Because of the apparent success of the fourth-power
polynomial approach for the rectangular aperture, the
question arises whether it could give useful results for other
shapes. In particular, there would be interest in the di-
amond and the rounded end slot of Fig. 1(b) and (c).
However, for these shapes, the coefficients in the fourth-
power polynomial cannot be determined so directly and
some intuitive reasoning is required to find some of the
coefficients.

III. DiaMoND

For the diamond shape in Fig. 1(b), the electric polariza-
bility can be expressed as

Pe=g(a)L?

in which the polarizability coefficient g(a) is a function of
the aspect ratio W/L.

For the diamond, the choice of L or W for the reference
direction is arbitrary, as it is for the rectangle, leading to

3
g'(1)=7s(1).

Thus, if the electric polarizability of a square is considered
to be known to good accuracy from Section II, two equa-
tions are available for the determination of the coefficients
of the fourth-power polynomial. However, whereas for the
rectangular aperture the behavior was known for a — 0, for
the diamond shape some intuitive reasoning is necessary to
ascertain the small o behavior.

For a rectangular aperture, as the ratio of width W to
length L goes to zero

16\ L
7T

=—W-3L
16

which may be interpreted as a polarizability of (7,/16)W 2
per unit length [5].

This suggests that if the width @ of a long narrow
aperture varies very slowly along the length, then the
polarizability could be obtained by integrating (7/16)w?
along the length of the aperture.

This postulate is supported by the fact that if it is used
to calculate the electric polarizability of a very long narrow
ellipse (as in Fig. 1(d) but with W < L) the result is

Zwer

24
which agrees with the exact solution from [6] for an ellipse
of eccentricity approaching unity.

The application of this reasoning to the diamond shape
gives

w
— -0 P — WL
- M
ie.,
7
0 —a’.
a— g(a)—->48a
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If, for a in the range 0 < a <1,g(a) is approximated by
g(a)=a+ba+ca’+da’+eat
then

0,b=0, and i

a=0,b=0,an re

Also, using the results for a square from Section II for a
diamond with W = L, the polarizability is

L 3
0.1126| =
=)
leading to g(1) = 0.0398 and g’(1) = 0.0597.
Then the resulting polynomial can be put in the form

(™)

Possibly the best check on this expression from the pub-
lished literature is in [1, fig. 5]. In that figure, the
“normalized electric polarizability” 7,,, defined as the
polarizability divided by (area)/?, is shown for both rect-
angular and diamond shapes. For an aspect ratio of 1, 7,
for a rectangle and a diamond are the same, as in that case
both are squares. For smaller aspect ratios, T, for a
diamond is slightly less than for a rectangle, with the
difference increasing as the aspect ratio is decreased until,
at a=0.1, the difference is approximately 5 percent. The
ratio between T, for a diamond and T, for a rectangle
calculated from the polynomial approach taken in this
paper would range between 1.0 for «=1.00 and 2y2 /3
(=0.943) for a — 0, with intermediate values of (.95 at
a=10.1 and 0.98 at a=0.5.

Also, [1, fig. 4] contains a plot, generated from six
computed data points, of the polarizability coefficient
against aspect ratio for diamond-shaped apertures. If val-
ues of g(a) from (7) for the same six aspect ratios are also
plotted on that figure, they fall within the small circles
marking the data points.

T
g(a) = ;2 o*{1.0-0.47940+0.0876 a’}.

IV. RounNDED END SLOT

If, for the rounded end slot shown in Fig. 1(c), the
electric polarizability is expressed as

Pe=h(a)L?

then #(1)=1/12 as that is the known result for a circle [6].
Also, as a — 0, h(«) for a rounded end slot will approach
the same value as for a rectangle. (Consider a rounded end
slot of fixed width W and length L. As L is increased, the
polarizability will go to (7/16)W 2L plus a correction term.
As L — o0, ie., a— 0, the (7/16)W 2L term will dominate.)
Therefore, as

T
0 h —a’.
a— (a)-—>16a

What is missing in this case is a direct way of obtaining
#’(1) as there is no equivalent of (3) (¢ >1 has no meaning).

Consider the effect on the polarizability of a circular
aperture of radius R if the radius is reduced very slightly
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Fig. 2. (a) Circle within a circle. (b) Rounded end slot within a circle.

TABLE II
ELECTRIC POLARIZABILITY COEFFICIENT OF A ROUNDED END SLOT
AS A FUNCTION OF ASPECT RATIO

« Polynomial Cohn Experiment

0.0833
0.0585
0.0325
0.0143
0.0070
0.0041
0.0019

1.0 0.0833
0.75 0.0589
0.5 0.0326
0.3 0.0139
0.2 0.0067
0.15 0.0039
0.1 0.0018

by &, as in Fig. 2(a)

2 3
Pe=—(R-9)
3
2
~—R>—2R3%.
3

Thus, for incrementally small values of 8, the change in Pe
is proportional to § and is R /7 times the change in area.
Also, it is known that the electric polarizability is not
orientation-dependent. This suggests that if § is not uni-
form around the boundary, provided it is very small and its
variation is smooth, then the change in polarizability may
be obtained by integrating 6 around the circumference, i.e.,
from R /7 times the change in area. This postulate is
supported by the fact that if it is applied to an elliptical
aperture of very small eccentricity, by considering the
ellipse to be a slight deformation of a circle, the result for
the polarizability is

1
—(3W - L)L?
24( )

which agrees with the exact solution from [6] for an ellipse
of eccentricity approaching zero.

Then A’(1) can be obtained by considering the limit as
a—1 of the rounded end slot within a circle as shown in
Fig. 2(b). The result is

(1) 1 1
4 27
The solution then proceeds as for the other aperture shapes
to give

(8)

Values for h(a) calculated from (8) are compared in Table
II with Cohn’s experimental results [4].

Note that if the reasoning used to obtain #’(1) was
incorrect, errors in A(ay could be expected for the larger

K
h(a)= Ea2{1.0—0.7650a +0.18940%}.
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TABLE III
ELECTRIC POLARIZABILITY COEFFICIENT OF AN ELLIPSE AS A
FUNCTION OF ASPECT RATIO

a Polynomial Exact Value Error
1.0 0.0833 0,0833 . -
0.9 0.0709. 0.0710 0.1%
0.8 0.0588 0.0591 0.5%
0.7 0.0472 0.0477 1.0%
0.6 0.0363 0.0369 1.6%
0.5 0.0264 0.0270 2.2%
0.4 0.0177 0.0182 2.7%
0.3 0.0104 0.0107 2.8%
0.2 0.00482 0.00498 3.2%
0.1 0.00126 0,00129 2.3%

. The largest absolute error occurs for « between 0.5 and 0.6, and the
largest percentage error occurs for a of approximately 0.2.

- values of a. However, the values of #(a) for a=0.5 and
a=0.75 are both within 1 percent of the experimental
results.

V. ELLIPSE

Finally, there may be some interest in a fourth-power
polynomial expression for the electric polarizability of an
elliptical aperture, either as a simpler alternative to the
exact solution [6] containing an elliptic ‘integral, or to

ascertain for this case how close the polynomial approach -

is to the exact solution (the ellipse is the only shape for
which this test can be applied).

For an ellipse, the polynomial expression for the polariz-
ability coefficient, obtained by the methods outlined above,
is

i(a)= 2—7;a2{1.0—0.4085a+0.0451a2}. 9)
From the comments made in Sections III and IV, it is
known that i(«) has the correct behavior as a — 0, and has
the correct magnitude and slope at a=1.

In Table III, values for the polarizability coefficient
calculated from the polynomial (9) are compared with
those from the exact solution.
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Polynomial approximations for the electric polarizability
coefficients of some small apertures are presented in (6)—(9).
When multiplied by L3, those expressions give the electnc
polarizabilities of the respective apertures.

It has been assumed that the apertures are small in
wavelength and that the wall is of infinitesimal thickness.
If either of those conditions is not satisfied, correction
terms will be necessary [7].

CONCLUSIONS
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